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Question 1. (Total marks: 20) 

(a) Classify the stochastic processes according to parameter space and state space using 
suitable examples. (15 marks) 
(b) What is gambler's ruin problem. (5 marks) 

Question 2. (Total marks: 20) 

Suppose that the probability of a dry day (state 0) following a rainy day (state 1) is 1/3 and 
that probability of a rainy day following a dry day is 1/2. 
(i) Develop a two-state transition probability matrix of the Markov chain. (5 marks) 
(ii) Given that May 1, 2023 is a dry day, find the probability that May 3, 2023 is a rainy day. 

(15 marks) 
Question 3. (Total marks: 20) 
(a) Define the period of a Markov chain. Differentiate between periodic and aperiodic 

Markov chains. (10 marks) 
(b) What is the nature of state 1 of the Markov chain whose transition probability matrix is 

given below: 
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(10 marks) 
Question 4. (Total marks: 20) 
(a) Find the steady-state probabilities of the Markov chain whose one-step transition 
probability matrix is given below: (15 marks) 
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(b) Differentiate between super-martingale and sub-martingale. 

Question 5. (Total marks:20) 

(5 marks) 

Suppose that the customers arrive at a service facility in accordance with a Poisson process 
with mean rate of 3 per minute. Then find the probability that during an interval of 2 minutes: 
(i) exactly 4 customers arrive (ii) greater than 4 customers arrive 
(iii) less than 4 customers arrive 
( e- 6 =0.00248) (20 marks) 

Question 6. (Total marks:20) 
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(a) Prove that if the arrivals occur in accordance with a Poisson process, then the inter-
arrival times are exponentially distributed. (10 marks) 

(b) Derive the Kolmogorov forward equations for a continuouse-time Markov chain. 
(10 marks) 

---------------------------------------END OF QUESTION PAPER-------------------------------------------------
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